Robot Behaviour Programmierung in URBI – Tipps und Tricks

Neues walk device in URBI!

Release 0.9.8

This new release of URBI which is now compatible with ERS7-M3 robots includes two new main components: The new 'walk' device than enables a new walk coming from the **robocup**!

Here is a short description of the 'walk' device:

position control:

walk.go(distance): walk forward or backward meters

walk.turn(angle): turn degrees

walk.side(distance): sidestep meters

walk.goto(y,x, theta): combine the three previous functions

These functions block until move is terminated or interrupted by a new move command.

Neues walk device

speed control:

walk.speedforward(), walk.speedbackward(),
walk.speedleft(), walk.speedright(),
walk.speedsideleft(), walk.speedsideright()
will move in the given direction at speed defined in walk.speed (between 0 and 1)

walk.speed(speed), walk.speedturn(speed) and walk.speedside(speed) will make the corresponding move, but at the signed speed passed as their parameter.

These functions can be mixed: the orders are averaged with each other.

These functions never stop: use tags, or stopif

odometry: the variables walk.x walk.y and walk.theta contains the position of the robot relative

to its start position. The variables can be reset to 0 by calling walk.reset()

Walk

Simple walk:

Using an original walk from the robocup, we extracted the two main **Fourier coefficients** for each joints. With **blend = add** mode, these two components are added on each joint to reproduce the original periodic oscillation:

```
def robot.walk(duration)
  echo "go for " + string(duration) + " secs";
  direction = 1;
  if (duration <0) {
    duration = - duration,
    direction = -1
  };
  walk: timeout(duration) {
    for & (x=1; x \le 2; x++)
      for & (y=1; y \le 2; y++)
        for & (j=1; j <=3; j++)
          for & (d=1; d \le 2; d++)
             robot.leg[x][y][j] = walk.mean[x][j]
                        sin:walk.speed*walk.coef[d]
                      ampli:walk.amp[x][j][d] *4
                  phase:direction*walk.phase[x][y][j][d]+pi*(direction-1)/2
};
```

Fourier Reihen

Periodic version of the identity function

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(\omega_n t) + b_n \sin(\omega_n t)],$$

das gleiche in Exponential Schreibweise:

$$f(t) = \sum_{n=-\infty}^{+\infty} c_n e^{i\omega_n t}$$

Periodic version of the identity function

Behaviour Graphs

Jean Piaget wurde am 9. August 1896 in Neuenburg geboren und verschied am 16. September 1980 in Genf.